Fourier Transform

Definition

The Fourier transform in continuous-time:

$$X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt$$

The Fourier transform in discrete-time:

$$X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}$$

The Fourier transform of a time signal is its correlation to a complex sinusoid with frequency \(\omega\).

Periodicity

\(X(j\omega)\) is generally not periodic, and \(X(e^{j\omega})\) is periodic with period \(2\pi\).

Conditions for Existence

Dirichlet conditions for \(X(j\omega)\):

  1. \(\int_{-\infty}^{\infty}|x(t)|dt\) is finite.
  2. Jumps in \(x(t)\) are finite and there are a finite number of jumps in a finite time interval
  3. There are a finite number of minima and maxima in a finite time internal.

sin (1/t)

Dirichlet condition for \(X(e^{j\omega})\):

  1. \(\sum_{n=-\infty}^{\infty}|x[n]|\) is finite.

Any signal that can be physically produced in a lab satisfies these Dirichlet conditions.

Some Fourier Transform Pairs

Continuous Time

\(x(t)\) Condition \(X(j\omega)\)
\(\delta(t)\) - 1
\(rect(\frac{t}{a})\) \(a>0\) \(\frac{2}{\omega}sin(\frac{a\omega}{2})\)
\(e^{-at}u(t)\) \(a>0\) \(\frac{1}{a+j\omega}\)

Discrete Time

\(x[n]\) Condition \(X(e^{j\omega})\)
\(\delta[n]\) - 1
\(rect[\frac{n}{2m+1}]\) \(m\gt 0\) \(\frac{sin(\frac{(2m+1)\omega}{2})}{sin(\frac{\omega}{2})}\)
\(a^{n}u[n]\) \(-1\lt a\lt1\) \(\frac{1}{1-ae^{-j\omega}}\)
1 - \(2\pi \hat{\delta_{2\pi}}(\omega)\)
\(\frac{1}{\pi n}sin(\frac{an}{2})\) \(0 \lt a \le 2\pi\) \(\hat{rect_{2\pi}}\frac{w}{a}\)

See More

Signals and Systems


Related
Articles · Learn